文库网
首页 > 杂谈趣闻

神奇的斐波那契数列

2023-04-08 来源:文库网

神奇的斐波那契数列

本文核心词:斐波那契数列,李永乐老师
如果我们把一些数字排成一排,就构成了一个数列。这些数字之间可能是有规律的,也可能是没有规律的,可能是有限个数字构成,也可能是无限多个数字构成。
比如,1、2、3、4、5….就构成了一个数列,后一个数与前一个数的差是不变的,这种数列称为等差数列。
再比如1、2、4、8、16…也构成了一个数列。后一项和前一项的比例是不变的,称为等比数列。
在自然界中,有一个最为神奇、几百年来一直被人们热议的数列,那就是“兔子数列”,也叫做斐波那契数列。

神奇的斐波那契数列


一. 阿拉伯数字
在十二世纪之前的欧洲,由于宗教原因,科学和数学的发展非常缓慢。欧洲人还习惯于使用罗马数字计数。罗马数字一共有7个数字,分别是:Ⅰ(1)、Ⅴ(5)、Ⅹ(10)、Ⅼ(50)、Ⅽ(100)、Ⅾ(500)和Ⅿ(1000)。
它的计数规则也比较复杂,比如:把两个数字并排,如果右边的数字比左边的数字小,则表示两个数字相加;如果右边的数字比左边的数字大,表示两个数字想减。此外还有许多复杂的规矩,使用起来非常不方便。

神奇的斐波那契数列


罗马数字
十二世纪时,欧洲数学才有了复苏的迹象。这是因为与阿拉伯国家的贸易和十字军东征等原因,欧洲同阿拉伯世界发生了联系,而此时的阿拉伯正在使用1234567890这样的符号表示数字,十分方便。由于这种数字是从阿拉伯国家学习到的,所以称为阿拉伯数字。
但是实际上,在公元前三世纪,印度人就已经在使用类似的方法表示数字了,阿拉伯数字是印度人发明的。在公元7世纪时,这种数字传入阿拉伯,后来又通过欧洲传播到全世界。
二. 斐波那契数列
斐波那契(也叫做比萨的列奥纳多)是一个意大利数学家,年少时随着父亲在北非做生意,学习了阿拉伯数字。
1200年,斐波那契回到了意大利,1202年写成了著作《计算之术》,这本书对欧洲的数学界产生了很大的影响。

神奇的斐波那契数列


猜你喜欢