文库网
首页 > 杂谈趣闻

世界上最难的数学题(5)

2023-04-08 来源:文库网
背景 我们所知多数非凡(nontrivial)--即有相互作用--的4维量子场论皆有cutoff scale的有效场论。因多数模型的beta-函数是正的,似乎大多数这类模型皆有一支Landau pole,因我们完全不清楚它们有没有非凡紫外定点。故此,若每一scale上皆定义有这样的量子场论[注 1],它只可能为单纯的自由场论。 然而,有不可交换结构群的杨-米尔斯理论(无夸克)例外。它有一种性质称为渐近自由,指它有一单纯的紫外定点。因此,我们可以寄望它成为非凡的构造性(constructive)四维量子场模型。 不交换群Yang-Mills理论的色禁闭性已有符合理论物理严谨性的证明,但未有符合数理物理严谨性的证明[注 3]。基本上,换言之,过了QCD尺度(或者这里应称为禁闭尺度,因为无夸克),那些色荷粒子被色动力学的流管连着,所以粒子间有线性势(弦张力x长度)。
所以胶子之类自由贺粒子不可能存在。若没有这些禁闭效应,我们应见到零质量的胶子;但因它们被禁闭,我们只见到不带色荷的胶子束绑态胶波。凡胶波皆质量,所以我们期望质量间隙。 格点规范场论的结果令不少工作者相信,这个模型真的有禁闭现象(由Wilson圈的真空期望值的下降的面积规律(area law)看出),但这项结果还没有符合数学的严慬性。
六:纳维-斯托克斯存在性与光滑性

世界上最难的数学题


纳维-斯托克斯存在性与光滑性是有关纳维-斯托克斯方程其解的数学性质有关的数学问题,是美国克雷数学研究所在2000年提出的7个千禧年大奖难题中的一个问题。 纳维-斯托克斯方程是流体力学的重要方程,可以描述空间中流体(液体或气体)的运动。纳维-斯托克斯方程的解可以用到许多实务应用的领域中。不过对于纳维-斯托克斯方程解的理论研究仍然不足,尤其纳维-斯托克斯方程的解常会包括紊流。虽然紊流在科学及工程中非常的重要,不过紊流仍是未解决的物理学问题之一。 许多纳维-斯托克斯方程解的基本性质都尚未被证明。例如数学家就尚未证明在三维坐标,特定的初始条件下,纳维-斯托克斯方程是否有符合光滑性的解。也尚未证明若这様的解存在时,其动能有其上下界,这就是纳维-斯托克斯存在性与光滑性问题。 由于了解纳维-斯托克斯方程被视为是了解难以捉摸的紊流现象的第一步,克雷数学研究所在2000年5月提供了美金一百万的奖金给第一个提供紊流现象相关信息的人,而不是给第一个创建紊流理论的人。
基于上述的想法,克雷数学研究所设定了以下具体的数学问题。
部分结果

世界上最难的数学题


二维空间下的纳维-斯托克斯问题已在1960年代得证:存在光滑及全局定义解的解。 在初速05[4]相当小时此问题也已得证:存在光滑及全局定义解的解。 若给定一初速06[6],且存在一有限、依06[7]而变动的时间T,使得在07[4]的范围内,纳维-斯托克斯方程有平滑的解,还无法确定在时间超过T后,是否仍存在平滑的解。 数学家让勒雷在1934年时证明了所谓纳维-斯托克斯问题弱解的存在,此解在平均值上满足纳维-斯托克斯问题,但无法在每一点上满足。
七:贝赫和斯维讷通-戴尔猜想

世界上最难的数学题


猜你喜欢