智能视觉识别检测及案例分析
2023-04-08 来源:文库网
智能视觉识别检测及案例分析
本文核心词:智能识别,视觉识别,AI识别,智能检测,视觉检测,机器识别,机器视觉检测,计算机识别随着工业物联网技术的迅猛发展,掀起了以云计算、大数据、以及人工智能 AI 等信息技术正与传统工业深入融合,由此衍生的 “智能制造4.0” 理念,正在为全球工业带来深远变革。
中国的制造业巨头也纷纷借此发力,向智能化、数字化制造演进,实施战略转型。如何高效科学的管理和分析制造业务链上的生产价值,推进制造企业生产工艺优化与产品质量提升是每一个制造企业在数字化、智能化转型过程中的必经之路。
业务发展带来的挑战
1. 精力疲劳
人眼识别的方式对产品进行检测,产生疲劳而导致注意力不集中,出现偏差。
2. 二次损伤
人手触摸产品,观察产品不同角度的亮度及表面差异,给产品造成二次损伤。
3. 多道检测流程
检测产品工艺缺陷、产品LOGO、铭牌漏装、螺钉漏装等层层的检测流程,时间长会导致产品疏忽及漏检。
智能视觉识别解决方案
基于机器视觉和人工智能搭建产品外观质量智能判别与优化平台,本着软科技、硬落地的方针,搭建集结构化与非结构化数据采集与存储、图像处理、机器学习与数据关联分析预测的产品质量综合提升平台。
通过利用机器视觉硬件组件的设计搭建和图像识别算法开发,可实现对产品外观质量快速、准确的智能化检测。完成对所有产品质量数据的全样本量化存储。基于产品质检数据与生产制造过程数据的闭环关联与分析挖掘, 对产品成品件质量影响因素进行全面分析和开裂缺陷的准确预测,实现生产线问题及时告警和支持决策响应。
基于边缘计算和AI的视觉识别平台
基于AI技术的视觉识别平台,主要由边缘端(边缘计算)和中心端(中心计算)两部分组成,其中工业相机,工业机器人以及英伟达NVIDIA Jetson Nano研发的HI 209V产品等嵌入式智能设备构成了图像视频采集端,部署在工厂自动化产线上;边缘计算部署的采集端及中心计算部署的液冷GPU工作站集群则撑起了该AI平台的主控系统。视觉识别平台整体架构图如下:
边缘计算端
- 在边缘计算端执行图像采集的机器人装有一个工业摄像机,一个工业照相机。工业照像机进行远距离拍摄,用于检测有无和定位;工业摄像机进行摄像,用于 OCR 识别。
- 以烤箱检测为例,当系统开始工作时,通过机器人与旋转台的联动,先使用摄像机对烤箱待检测面的全局视频摄像,并检测计算后,提取需要进行 OCR 识别位置,驱动工业相机进行局部拍摄。
- 相机采集到的不同视觉图像,会首先交由基于英伟达NVIDIA Jetson Nano开发的HI 209V边缘计算进行视频处理:快速降噪(修复)、视觉增强、失焦修复、风格转换等预处理。
- 根据标准图像机本库进行数据的预处理:数据清洗、图像预处理、数据集构造、归一化处理、检测需求确定是否需要传输回到中心计算端,如果需要,则通过网络传送到中心端交由液冷GPU工作站HD210 分析处理。